Attention-based Deep Learning Approaches in Brain Tumor Image Analysis: A Mini Review

Mohammadreza Saraei, Sidong Liu
735

Views


Abstract

Introduction: Accurate diagnosis is crucial for brain tumors, given their low survival rates and high treatment costs. However, traditional methods relying on manual interpretation of medical images are time-consuming and prone to errors. Attention-based deep learning, utilizing deep neural networks to selectively focus on relevant features, offers a promising solution.

Material and Methods: This paper presents an overview of recent advancements in attention-based deep learning for brain tumor image analysis. While the reviewed models have demonstrated respectable performance across different datasets, they have yet to achieve state-of-the-art results.

Results: Advanced techniques, including super-resolution image reconstruction, multi-swin-transformer blocks, and spatial group-wise enhanced attention blocks, have shown improved segmentation network performance. Integration of graph attention, swin-transformer, and gradient awareness minimization with positional attention convolution blocks, self-attention blocks, and intermittent fully connected layers has considerably enhanced the efficiency of classification networks.

Conclusion: While attention-based deep learning has shown improvements in performance, challenges persist. These challenges include the requirement for large datasets, resource limitations, accurate segmentation of irregularly shaped tumors, and high computational demands. Future studies should address these challenges to further enhance the efficiency of brain tumor diagnoses in real-world settings.

Keywords

Brain Tumor; Attention; Deep Learning; Medical Image Analysis; Diagnosis;

References

Goel NJ, Bird CE, Hicks WH, Abdullah KG. Economic implications of the modern treatment paradigm of glioblastoma: An analysis of global cost estimates and their utility for cost assessment. J Med Econ. 2021; 24(1): 1018-24. PMID: 34353213 DOI: 10.1080/13696998.2021.1964775

Chatterjee S, Nizamani FA, Nürnberger A, Speck O. Classification of brain tumours in MR images using deep spatiospatial models. Sci Rep. 2022; 12(1): 1505. PMID: 35087174 DOI: 10.1038/s41598-022-05572-6

Anaraki AK, Ayati M, Kazemi F. Magnetic resonance imaging-based brain tumor grades classification and grading via convolutional neural networks and genetic algorithms. Biocybernetics and Biomedical Engineering. 2019; 39(1): 63-74.

Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021; 71(3): 209-49. PMID: 33538338 DOI: 10.3322/caac.21660

Overcast WB, Davis KM, Ho CY, Hutchins GD, Green MA, Graner BD, et al. Advanced imaging techniques for neuro-oncologic tumor diagnosis, with an emphasis on PET-MRI imaging of malignant brain tumors. Curr Oncol Rep. 2021; 23(3): 34. PMID: 33599882 DOI: 10.1007/s11912-021-01020-2

Celard P, Iglesias E, Sorribes-Fdez J, Romero R, Vieira AS, Borrajo L. A survey on deep learning applied to medical images: From simple artificial neural networks to generative models. Neural Comput Appl. 2023; 35(3): 2291-323. PMID: 36373133 DOI: 10.1007/s00521-022-07953-4

Saraei M, Rahmani S, Rajebi S, Danishvar S. A different traditional approach for automatic comparative machine learning in multimodality COVID-19 severity recognition. International Journal of Innovation in Engineering. 2023; 3(1): 1-12.

Abràmoff MD, Lavin PT, Birch M, Shah N, Folk JC. Pivotal trial of an autonomous AI-based diagnostic system for detection of diabetic retinopathy in primary care offices. NPJ Digit Med. 2018; 1: 39. PMID: 31304320 DOI: 10.1038/s41746-018-0040-6

LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015; 521(7553): 436-44. PMID: 26017442 DOI: 10.1038/nature14539

Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification with deep convolutional neural networks. In: Pereira F, Burges CJ, Bottou L, Weinberger KQ (Eds). Advances in neural information processing systems. NeurIPS Proceedings; 2012.

Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. International Conference on Learning Representations. Computational and Biological Learning Society; 2015.

He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. IEEE Conference on Computer Vision and Pattern Recognition. IEEE; 2016.

Huang G, Liu Z, Van Der Maaten L, Weinberger KQ. Densely connected convolutional networks. IEEE Conference on Computer Vision and Pattern Recognition. IEEE; 2017.

Katzman JL, Shaham U, Cloninger A, Bates J, Jiang T, Kluger Y. DeepSurv: Personalized treatment recommender system using a Cox proportional hazards deep neural network. BMC Med Res Methodol. 2018; 18(1): 24. PMID: 29482517 DOI: 10.1186/s12874-018-0482-1

Cao Y, Zhou W, Zang M, An D, Feng Y, Yu B. MBANet: A 3D convolutional neural network with multi-branch attention for brain tumor segmentation from MRI images. Biomedical Signal Processing and Control. 2023; 80: 104296.

Zhang J, Jiang Z, Dong J, Hou Y, Liu B. Attention gate resU-Net for automatic MRI brain tumor segmentation. IEEE Access. 2020; 8: 58533-45.

Solanki S, Singh UP, Chouhan SS, Jain S. Brain tumor detection and classification using intelligence techniques: An overview. IEEE Access. 2023; 11: 12870 - 86.

Liu J, Li M, Wang J, Wu F, Liu T, Pan Y. A survey of MRI-based brain tumor segmentation methods. Tsinghua Science and Technology. 2014; 19(6): 578-95.

Jose L, Liu S, Russo C, Cong C, Song Y, Rodriguez M, et al. Artificial intelligence–assisted classification of gliomas using whole-slide images. Arch Pathol Lab Med. 2023; 147(8): 916-24. PMID: 36445697 DOI: 10.5858/arpa.2021-0518-OA

Verger A, Kas A, Darcourt J, Guedj E. PET imaging in neuro-oncology: An update and overview of a rapidly growing area. Cancers (Basel). 2022; 14(5): 1103. PMID: 35267411 DOI: 10.3390/cancers14051103

Kareem SW, Bikhtiyar FA, Hawezi RS, Khoshaba FS, Askar S, Muheden KM, et al. Comparative evaluation for detection of brain tumor using machine learning algorithms. IAES International Journal of Artificial Intelligence. 2023; 12(1): 469.

Vetriselvi D, Thenmozhi R. A systematic literature review on deep learning based medical image segmentation. International Journal of Intelligent Systems and Applications in Engineering. 2023; 11(5s): 519-26.

Arabahmadi M, Farahbakhsh R, Rezazadeh J. Deep learning for smart healthcare: A survey on brain tumor detection from medical imaging. Sensors (Basel). 2022; 22(5): 1960. PMID: 35271115 DOI: 10.3390/s22051960

Bauer S, Wiest R, Nolte L-P, Reyes M. A survey of MRI-based medical image analysis for brain tumor studies. Phys Med Biol. 2013; 58(13): R97-129. PMID: 23743802 DOI: 10.1088/0031-9155/58/13/R97

Tavakoli MB, Khorasani A, Jalilian M. Improvement grading brain glioma using T2 relaxation times and susceptibility-weighted images in MRI. Informatics in Medicine Unlocked. 2023; 37: 101201.

Jaju A, Yeom KW, Ryan ME. MR imaging of pediatric brain tumors. Diagnostics (Basel). 2022; 12(4): 961. PMID: 35454009 DOI: 10.3390/diagnostics12040961

Li X, Li M, Yan P, Li G, Jiang Y, Luo H, et al. Deep learning attention mechanism in medical image analysis: Basics and beyonds. International Journal of Network Dynamics and Intelligence. 2023; 2(1): 93-116.

Xu K, Ba J, Kiros R, Cho K, Courville A, Salakhudinov R, et al. Show, attend and tell: Neural image caption generation with visual attention. International conference on machine learning. PMLR; 2015.

Liu M, Yang J. Image classification of brain tumor based on channel attention mechanism. Journal of Physics: Conference Series. 2021; 2035: 012029.

Yao Y, Qian P, Zhao Z, Zeng Z. Residual channel attention network for brain glioma segmentation. Annual International Conference of the IEEE Engineering in Medicine & Biology Society. IEEE; 2022.

Quader N, Bhuiyan MMI, Lu J, Dai P, Li W. Weight excitation: Built-in attention mechanisms in convolutional neural networks. Computer Vision: 16th European Conference. Springer; 2020.

Bello I, Zoph B, Vaswani A, Shlens J, Le QV. Attention augmented convolutional networks. IEEE/CVF International Conference on Computer Vision. IEEE; 2019.

Jalalifar SA, Soliman H, Sahgal A, Sadeghi-Naini A. A self-attention-guided 3D deep residual network with big transfer to predict local failure in brain metastasis after radiotherapy using multi-channel MRI. IEEE J Transl Eng Health Med. 2022; 11: 13-22. PMID: 36478770 DOI: 10.1109/JTEHM.2022.3219625

Mazumdar I, Mukherjee J. Fully automatic MRI brain tumor segmentation using efficient spatial attention convolutional networks with composite loss. Neurocomputing. 2022; 500: 243-54.

Woo S, Park J, Lee J-Y, Kweon IS. CAM: Convolutional block attention module. The European Conference on Computer Vision. ECCV; 2018.

Gan X, Wang L, Chen Q, Ge Y, Duan S. GAU-Net: U-Net based on global attention mechanism for brain tumor segmentation. Journal of Physics: Conference Series. 2021; 1861: 012041.

Jia Z, Zhu H, Zhu J, Ma P. Two-branch network for brain tumor segmentation using attention mechanism and super-resolution reconstruction. Comput Biol Med. 2023; 157: 106751. PMID: 36934534 DOI: 10.1016/j.compbiomed.2023.106751

Nandakumar N, Manzoor K, Agarwal S, Pillai JJ, Gujar SK, Sair HI, et al. A multi-scale spatial and temporal attention network on dynamic connectivity to localize the eloquent cortex in brain tumor patients. International Conference of Information Processing in Medical Imaging: Virtual Event. Springer; 2021.

Lin J, Lin J, Lu C, Chen H, Lin H, Zhao B, et al. CKD-TransBTS: clinical knowledge-driven hybrid transformer with modality-correlated cross-attention for brain tumor segmentation. IEEE Trans Med Imaging. 2023; 42(8): 2451-61. PMID: 37027751 DOI: 10.1109/TMI.2023.3250474

Li G, Fang Q, Zha L, Gao X, Zheng N. HAM: Hybrid attention module in deep convolutional neural networks for image classification. Pattern Recognition. 2022; 129: 108785.

Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, et al. Attention is all you need. In: Guyon I, Von Luxburg U, Bengio S, Wallach H, Fergus R, Vishwanathan S, et al. (Eds). Advances in neural information processing systems. NeurIPS Proceedings; 2017.

Kakarla J, Venkateswarlu IB. Brain tumor grade detection using transfer learning and residual multi-head attention network. International Conference on Computer Vision and Image Processing. Springer; 2022.

Hatamizadeh A, Nath V, Tang Y, Yang D, Roth HR, Xu D. Swin unetr: Swin transformers for semantic segmentation of brain tumors in MRI images. International MICCAI Brainlesion Workshop. Springer; 2021.

Liu H, Huo G, Li Q, Guan X, Tseng M-L. Multiscale lightweight 3D segmentation algorithm with attention mechanism: Brain tumor image segmentation. Expert Systems with Applications. 2023; 214: 119166.

Chang Y, Zheng Z, Sun Y, Zhao M, Lu Y, Zhang Y. DPAFNet: A residual dual-path attention-fusion convolutional neural network for multimodal brain tumor segmentation. Biomedical Signal Processing and Control. 2023; 79: 104037.

Zongren L, Silamu W, Shurui F, Guanghui Y. Focal cross transformer: Multi-view brain tumor segmentation model based on cross window and focal self-attention. Front Neurosci. 2023; 17: 1192867. PMID: 37250393 DOI: 10.3389/fnins.2023.1192867

Nian R, Zhang G, Sui Y, Qian Y, Li Q, Zhao M, et al. 3D fusion transformer for brain tumor segmentation. ArXiv Preprint; 2023.

Hu Z, Li L, Sui A, Wu G, Wang Y, Yu J. An efficient R-transformer network with dual encoders for brain glioma segmentation in MR images. Biomedical Signal Processing and Control. 2023; 79: 104034.

ZongRen L, Silamu W, Yuzhen W, Zhe W. DenseTrans: Multimodal brain tumor segmentation using swin transformer. IEEE Access. 2023; 11: 42895-908.

El Badaoui R, Coll EB, Psarrou A, Villarini B. 3D CATBraTS: Channel attention transformer for brain tumour semantic segmentation. International Symposium on Computer-Based Medical Systems. IEEE; 2023.

Ali TM, Nawaz A, Ur Rehman A, Ahmad RZ, Javed AR, Gadekallu TR, et al. A sequential machine learning-cum-attention mechanism for effective segmentation of brain tumor. Front Oncol. 2022; 12: 873268. PMID: 35719987 DOI: 10.3389/fonc.2022.873268

Li J, Yu H, Chen C, Ding M, Zha S. Category guided attention network for brain tumor segmentation in MRI. Phys Med Biol. 2022; 67(8): 1-6. PMID: 35354136 DOI: 10.1088/1361-6560/ac628a

Akbar AS, Fatichah C, Suciati N. Single level UNet3D with multipath residual attention block for brain tumor segmentation. Journal of King Saud University-Computer and Information Sciences. 2022; 34(6): 3247-58.

Jiang Y, Zhang Y, Lin X, Dong J, Cheng T, Liang J. SwinBTS: A method for 3D multimodal brain tumor segmentation using swin transformer. Brain Sci. 2022; 12(6): 797. PMID: 35741682 DOI: 10.3390/brainsci12060797

Cao T, Wang G, Ren L, Li Y, Wang H. Brain tumor magnetic resonance image segmentation by a multiscale contextual attention module combined with a deep residual UNet (MCA-ResUNet). Phys Med Biol. 2022; 67(9): 1-9. PMID: 35294935 DOI: 10.1088/1361-6560/ac5e5c

Liu D, Sheng N, He T, Wang W, Zhang J, Zhang J. SGEResU-Net for brain tumor segmentation. Math Biosci Eng. 2022; 19(6): 5576-90. PMID: 35603369 DOI: 10.3934/mbe.2022261

Chinnam SKR, Sistla V, Kolli VKK. Multimodal attention-gated cascaded U-Net model for automatic brain tumor detection and segmentation. Biomedical Signal Processing and Control. 2022; 78: 103907.

Liang J, Yang C, Zeng M, Wang X. TransConver: Transformer and convolution parallel network for developing automatic brain tumor segmentation in MRI images. Quant Imaging Med Surg. 2022; 12(4): 2397-415. PMID: 35371952 DOI: 10.21037/qims-21-919

Chen Y, Yin M, Li Y, Cai Q. CSU-Net: A CNN-transformer parallel network for multimodal brain tumour segmentation. Electronics. 2022; 11(14): 2226.

Ferdous GJ, Sathi KA, Hossain MA, Hoque MM, Dewan MAA. LCDEiT: A linear complexity data-efficient image transformer for MRI brain tumor classification. IEEE Access. 2023; 11: 20337-50.

Sharma AK, Sharma NK. A novel vision transformer with residual in self-attention for biomedical image classification. ArXiv Preprint; 2023.

Aloraini M, Khan A, Aladhadh S, Habib S, Alsharekh MF, Islam M. Combining the transformer and convolution for effective brain tumor classification using MRI images. Applied Sciences. 2023; 13(6): 3680.

Meshram PA, Joshi S, Mahajan D. Brain tumor detection using Swin transformers. ArXiv Preprint; 2023.

Tang C, Li B, Sun J, Wang S-H, Zhang Y-D. GAM-SpCaNet: Gradient awareness minimization-based spinal convolution attention network for brain tumor classification. Journal of King Saud University-Computer and Information Sciences. 2023; 35(2): 560-75.

Isunuri BV, Kakarla J. EfficientNet and multi-path convolution with multi-head attention network for brain tumor grade classification. Computers and Electrical Engineering. 2023; 108: 108700.

Apostolopoulos ID, Aznaouridis S, Tzani M. An attention-based deep convolutional neural network for brain tumor and disorder classification and grading in magnetic resonance imaging. Information. 2023; 14(3): 174.

Tummala S, Kadry S, Bukhari SAC, Rauf HT. Classification of brain tumor from magnetic resonance imaging using vision transformers ensembling. Curr Oncol. 2022; 29(10): 7498-511. PMID: 36290867 DOI: 10.3390/curroncol29100590

Qu R, Xiao Z. An attentive multi-modal CNN for brain tumor radiogenomic classification. Information. 2022; 13(3): 124.

Shaik NS, Cherukuri TK. Multi-level attention network: Application to brain tumor classification. Signal, Image and Video Processing. 2022; 16(3): 817-24.

Mishra L, Verma S. Graph attention autoencoder inspired CNN based brain tumor classification using MRI. Neurocomputing. 2022; 503: 236-47.

Dosovitskiy A, Beyer L, Kolesnikov A, Weissenborn D, Zhai X, Unterthiner T, et al. An image is worth 16x16 words: Transformers for image recognition at scale. ArXiv Preprint; 2020.




DOI: https://doi.org/10.30699/fhi.v12i0.493

Refbacks