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Introduction: Integration of rapidly expanding high-throughput omics 
technologies and electronic health record (EHR) has created an 
unprecedented advantage in terms of acquiring routine healthcare data to 
accelerate genetic discovery. In this regard, EHR can also provide several 
important advantages to omics research if the integration challenges are 
well handled. The main purpose of the present study was to review available 
and published knowledge in the related literature and then to classify and 
discuss stakeholders’ requirements in this domain. 

Material and Methods: At first, a broad electronic search of all available 
literature in English was conducted on the topic through a search in the 
databases of Medline, Web of Science, Institute of Electrical and Electronics 
Engineers (IEEE), Scopus, and Cochrane. Then, stakeholders’ requirements 
were tabulated, and finally, a word cloud was generated and analyzed to 
achieve functional and non-functional cases. 

Results: A total of 81 articles were included in the given analysis. 
Integration requirements also consisted of nine functional cases including a 
uniform approach to the interpretation of genetic tests, standardized 
terminologies and ontologies, structured data entry as much as possible, an 
integrated online patient portal, multiple data source handling, machine-
readable storing and reporting, research-oriented requirements, 
pharmacogenomics decision support capabilities, and phenotyping 
algorithms and knowledge base. Besides, there were three non-functional 
cases comprised of interoperability of multiple systems, ethical, legal, 
security factor, and big data computations. 

Conclusion: The main challenges in this way could also have semantic and 
technical themes. Therefore, system developers could guarantee the success 
of systems by overcoming the given challenges. 
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INTRODUCTION 

Large-scale investments in fundamental sciences 
have resulted in major advances in clinical medicine. 
Researchers have also discovered hundreds of genes 
and constantly examined their structures, functions, 
and behaviors. In this respect, personalized or 
precision medicine (PM) has been recognized as a 
wide and rapidly expanding area of healthcare in 
which clinical, genomic and other omics 
characteristics of individuals are being discussed. 
Accordingly, a combination of these data sources has 
been labeled as multi-omics. Healthcare embracing 

PM similarly provides an integrated and evidence-
based approach for continuous delivering and 
persistent care in an individual manner. In this 
emerging area, genomic medicine is being used to 
achieve a molecular understanding of a disease in 
terms of the development of prevention and drug 
strategies at the early stages of the disease and even 
before its occurrence [1, 2]. 

PM hopes to provide new tools for promoting 
accuracy, prevention, and effectiveness of healthcare. 
This promising vision is relying on the usefulness of 
applications derived from modern knowledge in 
biological systems as well as its combination with 
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information technology (IT) power. Therefore, 
revision and revolution in various sectors of health 
systems within this quick move can be inevitable. For 
example, innovations and their related costs 
provided by policy-makers, adequate evidence, and 
comparative research together with their standards 
that are necessary to formulate solutions concerning 
the necessity of establishing PM based on clinical 
evidence, data standards within clinical research, 
patient safety, and public health, consumer care tools 
as well as health-related IT [3, 4].  

Accordingly, the integration of rapidly expanding 
high-throughput genotyping technologies and EHR 
has established an unprecedented advantage in 
terms of acquiring routine healthcare data to 
accelerate genetic discovery. Healthcare systems will 
also form such visions by developing integrated 
biobanks of EHR [4]. Moving towards EHRs has even 
led to the accessibility of medical information. 
However, the low quality and granularity of the 
recorded data have limited their usage in the 
domains of omics research and evidence-based 
medicine (EBM). The given challenge equally varies 
between healthcare institutes, and different 
infrastructures of EHR have brought about different 
outcomes. Hence, a national and pervasive model can 
be assume as the best choice for incorporating multi-
omics data into the EHR. In this respect, personalized 
or precision medical interventions require more 
genome sequencing, generating big data and 
analyzing them, as well as linking outcomes to EHR 
structure [5]. As the challenges of generating and 
storing multi-omics data are gradually met, the 
challenges of management, integration, 
interoperability, analysis and interpretation of latent 
knowledge are on an increase more and more. Thus, 
there is a requirement to create a bridge to the 
integration gap [6]. 

EHR can also provide several important advantages 
to omics research, including cost savings, high 
accessibility of clinical big data, and the ability to 
process data in the form of time series as the most 
important ones. The ability to reuse this data can also 
be provided at a low cost to researchers by applying 
EHR integrated with multi-omics data. Additionally, it 
is possible to carry out extensive meta-analysis 
studies. The findings in this line have shown that 
EHR-based approaches save about 82% of the costs 
of each sample. In addition, some studies have 
focused on reducing the design and implementation 
time of research compared with that of traditional 
methods [7-9]. 

The other advantage of the integration of EHR with 
molecular information is to provide an analytical 
platform for a large amount of data created and to 
support this platform for establishing large cohorts 
aimed at subsequent analysis, which will generate a 
new perspective. In this regard, a study had also 

mentioned that the average number of samples in 
biobanks had reached 460,000 records and it was 
growing dramatically [10]. Another advantage of an 
integrated infrastructure between multi-omics data 
and EHR is associating with the accessibility of trends 
in an optional time series, representing a valuable 
investment in genetic research. Moreover, genotypes 
and phenotypes can be discussed during naturally 
occurring time intervals such as disease and drug 
side effects and their progress, survival rates, as well 
as responses to treatments. Therefore, low-cost 
information update in EHR leads to high accuracy in 
omics computational algorithms [11-13]. 

Considering the importance of integration of multi-
omics data into EHR, the present study was 
conducted to propose an applied solution by 
reviewing available and published knowledge in the 
related literature and presenting object-oriented 
modeling and prototyping in the form of a standard 
conceptual model for effective integration.    

The main objectives of the present study included: 

¶ Extracting and organizing available 
knowledge about genomic-enabled 
challenges and requirements of EHR, using 
an umbrella review of stakeholders’ 
viewpoints; and, 

¶ Modeling and discussing stakeholders’ 
functional and non-functional requirements. 

MATERIAL AND METHODS 

The present study fulfilled two major phases to 
achieve the pre-determined objectives below:  

First, a wide electronic search of all published items 
in English was conducted until 30 July 2020 using five 
databases: PubMed (the National Center for 
Biotechnology Information (NCBI)), Web of Science, 
Scopus, Institute of Electrical and Electronics 
Engineers (IEEE), and Cochrane. The searches 
included online books, published and in-press 
articles, as well as conference papers to ensure the 
inclusion of as many articles as possible. Then, the 
titles, abstracts, keywords, and the bibliographies of 
all the selected studies were subsequently searched 
for potentially relevant articles.  

Then, the full texts of the reviews or perspectives 
were checked with focus on mentioned challenges 
and implications of EHR and omics data integration 
in the articles. The inclusion criteria were (a) articles 
in English, (b) reviews, (c) systematic reviews (d), 
reviews with data/narrative synthesis, (e) meta-
analyses, (f) perspectives, (g) reports or formulations 
in reputed journals (h), brief or comprehensive 
communications, as well as (h) letters and 
commentaries publishes until 30 July 2020. The 
studies were excluded if not accessible through 
university networks on databases. A combination of 
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the following terms was used to retrieve related 
papers. 

(Personalized OR Precision) AND Medicine AND 
(EHR OR Electronic Medical Record OR EMR) 

It should be noted that all the selected articles were 
included because all of the mentioned implications 
and challenges were stakeholders’ requirements 
addressed in the present model. According to 
software development methodologies, one of the 
major sources of stakeholders’ requirements was 
their comments, interviews, reports, and 
perspectives. Therefore, all the articles were included 
for requirement analysis. Distribution of included 
studies over time as shown in Fig 1. 

 

Fig 1: Distribution of included studies over time 

Additionally, some text processing methods such as 
word cloud generator, remove stop words and 
tokenization were employed to visualize a more 
beneficial outcome of the review phases. Finally, the 
extracted evidence was discussed to support the 
requirements. 

RESULTS 

Characteristics of Articles and Related Challenges  

The distribution of the selected articles over time was 
illustrated in Fig 2. A text-preprocessing phase was 
fulfilled to extract the most important keywords in 
terms of challenges and requirements. Stop words 
were also removed and general tokens such as “may, 
must, clinical, genomic, data, EHR, etc.” were added to 
stop word dictionary to ignore items with low 
information value. As shown in Fig 2, a word cloud 
with a maximum of 300 words was generated to 
achieve some frequent key challenges in the given 
articles. The open-source Word Cloud for Python 
documentation library was also used [14]. 

To summarize the given challenges and 
requirements, frequent key challenges and 
requirements were re-analyzed and converted into 
some clean stakeholders’ scenarios in two different 
categories for requirement engineering, functional 
(use cases) and non-functional (quality attributes) 
requirements. The unified modeling language (UML) 
(ver. 2) use case diagram was also employed to 
display the requirements [15]. Fig 3 shows the 
associated items. 

 

 

Fig 2: A word cloud generated from table of challenges and 
requirements after text preprocessing 

 

Fig 3: Functional (gray) and non-functional (white) 
requirements 

As a general result of extracted challenges from the 
review, the present solution should take into account 
of interoperability, uniform reporting, 
standardization, structured data entry, integration 
with other information systems, confidentiality and 
privacy, multiple data source, machine-readable 
store and retrieval, research capabilities, decision 
support system (DSS), knowledge management, and 
big and high dimensional data management and 
computation as the main requirements.  

Solutions, technical notes, and recommendations  

All solutions, tasks, artifacts, and recommendations 
of the reviewed articles were extracted to propose a 
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uniform conceptual model for multi-omics 
integration into EHR. The requirements were also 
discussed by an explanation of current evidence and 
achievements. 

In this respect, Shoenbill et al. [16] mentioned that 
standardized genetic terminologies and methods for 
data transfer as well as a standard structure and 
language were required to exchange information 
between clinical systems and transform knowledge 
in clinical DSSs. Examples of available standards 
included health level 7 (HL7) for messaging, genomic 
variation format (GVF) for genetic data annotation, 
logical observation identifiers names and codes 
(LOINC), human genome variation society (HGVS), 
human gene nomenclature committee’s (HGNC) 
terminology, and systematized nomenclature of 
medicine: clinical terms (SNOMED CT) [17]. 
Currently, the primary standards applied for 
genomics test management and exchange include 
LOINC, HGVS, HGNC, the database of single nucleotide 
polymorphisms (dbSNP), reference sequences NCBI 
(RefSeq), and the international system for human 
cytogenetic nomenclature (ISCN) that contain 
information about genetic test findings and risk 
factors [16]. Unfortunately, in 2017, Sitapati et al. 
[18] stated that these terminologies had not been 
adopted by a high portion of laboratories. 
Additionally, traditional terminologies of health 
information technology had not supported genetic 
concepts (such as diseases) well. Online mendelian 
inheritance in man (OMIM) had also listed many of 
these diseases but had not been integrated with EHR 
and a gap had remained between it and SNOMED CT. 
Moreover, some countries had applied the 
international classification of diseases (ICD) codes for 
registration of patient clinical conditions which was 
insufficient for genomics [19]. Today, a synergy exists 
between extensions based on extensible markup 
language (XML) especially HL7 and service-oriented 
architecture (SOA). HL7 defines message formats that 
can store various laboratory result forms and other 
health information, SOA or web services also offer a 
strong solution in which laboratory and electronic 
health systems can be connected [20]. In this respect, 
Deckard et al. [21] explained that LOINC could cover 
the scope of laboratory testing (e.g. microbiology), 
and a diverse spectrum of clinical measurements 
(e.g., vital signs or radiology reports) by more than 
73,000 terms. It could similarly represent laboratory 
concepts such as basic attributes, answer lists, 
observation panels, and other details like help text, 
language variants, and units of measure in a powerful 
data model. They further focused on more than 1400 
terms currently applied in reporting of genetic tests. 
LOINC could also employ HGNC’s terminology to 
name the gene(s) and HGVS’s terms to label the 
variation(s) in genetic tests [21]. Consequently, the 
researchers had to follow a combined approach 
based on discussed technologies and extensions to 

develop architecture and database of their models.  

Hazin et al. [22] shed light on improving genomic 
literacy between patients, nurses, physicians, and 
laboratory technicians. They recommended patient 
educational programs and online educational 
services to help patients gain better perceptions. 
Furthermore, a combination of EHR systems with 
specialized training on interpreting genomic 
information was suggested in the core of activities. 
Additionally, a test template was recommended that 
could provide a uniform structure to standardized 
genetic testing, enable primary care, and reduce 
reporting misunderstandings. In addition, Kullo et al. 
[23] emphasized consistency and reliability of 
genotype reporting via applying EHR mechanisms. At 
this point, it was emphasized that DSS reporting 
needed a similar approach. HL7 also published an 
implementation guideline for reporting structured 
clinical genetic tests [23] whose benefits were as 
follow:  

1) creating a common infrastructure to communicate 
patient-specific genetic data between stakeholders, 

2) enabling both human and computer readability of 
genetic data to develop clinical DSSs and real-time 
computations, and  

3) supporting healthcare practices and clinical trials 
together [24].  

Moreover, supporting cohort studies were proposed 
by Kohane et al. [25]. The problem of phenotypic 
misclassification recorded in genomic research due 
to rarely codified data in narrative texts could also 
lead to insufficient computable data to drive 
phenotype-genotype studies. Hence, guidelines, 
templates, and uniform structures were applied in 
developing the architecture of the present model.  

Much of the valuable data found in EHR are 
represented in free texts and are even unstructured 
such as radiology, laboratory, and genetic test results 
[23]. Moreover, genetic variants extracted from the 
sequence would be integrated into EHR as structured 
data and must be stored in a structured and machine-
readable format to trigger clinical DSSs [26]. By 
extending the structured data entry, computerized 
physician order entry (CPOE) systems and clinical 
alerts can be thus designed through being integrated 
with clinical DSSs and pharmacogenomics [19]. 
Semantic machine processability (SMP) is also a 
concept that normalizes specific information in a 
common structure to realize machine readability. 
Within SMP, relevant concepts and relationships are 
explicitly revealed by computational methods such as 
neuro-linguistic programming (NLP) and semantic 
interoperability since unstructured and structured 
data in clinical data sources can have different 
representations at semantic levels consisting of codes 
mapped from various local, national, and 
international coding systems as well as a variety of 
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reference ranges, units, and timeline templates. It is 
also considered a daunting challenge to the efforts 
towards doing semantic explicit analysis. Therefore, 
without formal constraints and operational 
mechanisms, it would be complex to capture deep 
richness in a data source and enable an effective data 
usage [27]. Moreover, existing clinical informatics 
architectures are incapable to store, search, annotate, 
and share genomic sequence data across healthcare 
systems requiring IT developers to collaborate with 
clinical experts and scientists to redesign EHR based 
on recommended solutions [16]. HL7 could 
internationally release an implementation guide for 
designing structured genetic test reports [26]. 
Structured data entry is also directly correlated with 
standardized terminologies. Some of the popular 
examples of standards, which could be used as an 
architectural facilitator, were genomic variation 
format (GVF), HL7, HGNC, genetic data annotation, 
HGVS, and genetic data representation for clinical use 
(LOINC, SNOMED CT, RXNorm, and etc.). As 
mentioned by Shoenbill et al. [16], the main 
standards utilized for genetic laboratory tests include 
LOINC, HGVS, HGNC, RefSeq, dbSNP, HGNC, and ISCN. 
Unfortunately, coding systems are not the only 
challenge in existing EHR. Data may be thus hidden in 
the unstructured or free text up to 80% of the value 
in EHR [28]. It requires NLP to derive textual entities 
from these notes. However, in current functional 
requirements, it is supposed that a new electronic 
health/ medical/laboratory system will be designed 
with a focus on coding standards and structured data 
entry. Therefore, structured data entry as well as 
mapping these fields has been recommended to 
coded concepts based on popular coding systems.  

To improve genomic literacy among patients and 
providers as well as pre/posttest counseling by 
trained medical geneticists, online portals have been 
proposed. Kullo et al. [23] highly recommended a 
web-based, user-friendly, and secure portal to 
empower patients. Our results showed that 
integrated online patient portals are an important 
feature in the implementation of personalized 
medicine. This portal can disseminate useful 
knowledge between patients by continuous news and 
information updated in a simple and easy-to-use 
manner.  Although many practitioners lack the 
requisite genomic knowledge to provide adequate 
counseling, genomic portals have an up-to-date 
knowledge body and can provide patient 
empowerment educational programs, online 
educational videos to engage the public with better 
perceptions, mobile-based accessibility to enhance 
communications, and online courses to improve 
literacy and genomic training between nurses [22]. 
Some quality attributes (non-functional 
requirements) should be correspondingly taken into 
account in the design of genomics patient portals 
such as patient privacy, timely accessibility, portal 

security, data confidentiality, consistency, usability, 
and reliability [22, 23]. Applying tools such as 
pictograms [29] and decision rules to share genomic 
information to patients and the public can make it 
possible to integrate clinical DSSs in online portals by 
generating a notification to patients of their genetic 
test results with human-friendly interpretations [23, 
30]. In addition, laboratory technicians can rapidly 
distribute genetic results to patients in their profiles 
and implement surveillance strategies at the heart of 
the portal [30]. As a result, the present solution 
should be satisfied by quality attributes as well as 
integrating with clinical DSSs in warnings, alarms, 
and notifications in the preferred form of a mobile 
application. 

One of the core requirements of genomics-EHR 
integration characterized the design of some 
pathways to clinical and research use of data [16]. In 
this regard, Scheuermann et al. [26] stated that 
secure and ongoing collection of gene-based and 
other molecular tests from EHRs and other health 
information systems (HISs) to the data warehouse 
and linkage with population-based registries could 
support researchers in making relationships among 
personal traits, interventions, and outcomes. It 
should be noted that the translation of molecular data 
into clinically actionable insights and research feeds 
is not possible by unstructured data formats as well 
as low-quality and non-normalized clinical ones [31]. 
Accordingly, computational methods can apply filters 
on documents and free texts and provide different 
levels of insights into disease-oriented studies and 
further research [32].   

Ulman et al. [19] mentioned that data warehouses 
and translational application frameworks would 
benefit PM by providing toolboxes for researchers to 
select study cohorts and to combine phenotype-
genotype data into their research processes and 
systems. Alterovitz et al. [33] also suggested an 
abstraction layer on top of file formats in the form of 
application protocol interfaces (API) reflecting the 
formats and data manipulation patterns. These APIs 
were able to contextualize genomics data with other 
systems for discovery and secondary research 
purposes. Besides, they recommended a combination 
of simple modular architecture research tools 
(SMART) on fast healthcare interoperability 
resources (FHIR) to enable standardized support of 
research.  

Another framework for research-oriented genomics 
clinical DSSs was proposed by translating knowledge 
into clinical DSSs rules and involving a layer of 
standards such as HL7 and LOINC data elements as 
well as ontology and rule creators such as CPIC. This 
approach could standardize knowledge by providing 
a standard language between researchers and 
software developers [33].  

There are some limitations of the EHR for research 
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include complete data capture, data quality and 
validation, system knowledge, and heterogeneity 
among systems [34]. Specially, for genomics research 
several challenges are containing missing data, little 
information (e.g. poor documentation of family 
history, environmental and lifestyle factors), finding 
reliable genomics information, imprecision in trait 
ascertainment, lack of interoperability, bias, and 
confidentiality [35]. Most of these problems can be 
handled by computational techniques for example 
there are several strategies to overcome missing data 
problems [36, 37]. Designing checklists with more 
detailed information can be helpful for elimination 
little information problem. Confidentiality issues 
needed to be addressed to provide continued 
research and development by collaborating with 
third parties [38]. Therefore, there was a 
requirement for some preprocessing algorithms to be 
applied on confidentiality requirements as to quality 
attributes. As a result, in the present framework, a 
proper process was proposed about the selected 
architecture and functional requirements. 

Considered as an important requirement, support of 
pharmacogenomics before drug prescription or 
detecting high-risk individuals based on genomics 
data was mentioned as a core component of novel 
and mature genomics HISs [39].Therefore, EHR could 
plays a critical informational role for adoption of 
pharmacogenomics as a part of routine medical care 
[40]. To order purposeful pharmacogenomics tests, 
the test outcomes were required to be easy to human 
understanding; as well, they needed to include 
clinically validated pharmacogenomics guidelines. 
Pharmacogenomics testing must be also integrated 
into EHRs and pharmacy-ordering systems especially 
by supporting international terminologies and 
coding systems such as world health organization 
international classification of diseases (WHO ICD). 
Moreover, these results should be machine-readable 
in order to design and develop pharmacogenomics 
clinical DSSs as well as alerting and recommender 
systems. Thus, pharmacogenomics guidelines are 
need to be converted into rules and algorithms; and 
then embedded into clinical DSS knowledge base to 
create clinician notifications and reports. Preferably, 
it has been fed through health economic models and 
a wide range of data with costs associated with 
adverse events related to selected medications in an 
evolutionary pharmacogenomics ecosystem [41]. 
CPIC has also defined and shared the best guides and 
practices for pharmacogenomics knowledge 
management and clinical DSSs [30]. However, the 
meaningful use of pharmacogenomics inpatient 
administration depends on standard mark-ups for 
gene expression and genetic variations [30]. This 
requirement can be fulfilled by structured data entry 
as well as formatted and coded data elements, which 
were discussed earlier. Ullman-Cullere et al. [19] also 
provided some evidence that structured 

pharmacogenomics data and clinical DSS could be 
embedded within CPOE. 

Genotype-phenotype structures and algorithms were 
the next requirements of mature genomics-
integrated EHRs. In this respect, electronic 
phenotyping in being performed robustly based on 
EHR. This procedure has been also followed by 
genome-wide association studies (GWAS). In this 
respect, Gottesman et al. [39] developed and 
published a code library of electronic phenotyping 
algorithms on health records in which phenotype 
knowledge base (PheKB) and formal phenotyping 
language were other achievements of their study. 
Accordingly, they suggested creating a repository of 
the most important pharmacogenetic variants to 
activate and support future genotype-phenotype 
research such as identification of novel genotype-
phenotype associations. Furthermore, Levy et al. [41] 
argued that raw genotype information did not 
include phenotypic interpretation. Furthermore, they 
categorized the results to develop a translation layer 
via assigning an identical phenotype category. The 
genotype-phenotype algorithms were then derived 
from multiple data sources and they needed to be 
developed and validated. Information on socio-
cultural determinants of health status, patient-
reported acquired data, and bio-bank derived data 
including omics data were among the major data 
sources of these algorithms [42].  

An un-interoperable information system or 
repository was not helpful in meaningful data 
exchange with other systems such as government 
agencies, healthcare providers, and various types of 
stakeholders like pharmaceutical corporations. In a 
wrong relationship, incorrect understanding could 
also mix up with interpretations. Information also 
requires a high degree of interoperability for sending 
and receiving genomics [19, 27]. Healthcare 
institutions with locally constructed information 
systems are thus suitable for implementation of 
pharmacogenomics by providing an appropriate 
architecture for facilitating interoperability. In this 
regard, HL7 proposed a model to exchange genetic 
tests with the contribution of EHR developers. 
Another implementation of interoperability in 
genomics-oriented information systems was 
developed by Illumina VeraCode® Absorption, 
Distribution, Metabolism, and Excretion (ADME) core 
panel for PREDICT project. They suggested that 
genetic variant data could be converted into a 
portable document format (PDF) or a plain text. In 
addition, a query in the form of an automated script 
to filter database views was embedded periodically 
into a central web service available to all sub-systems 
and components [41]. As an essential software 
architecture, SOA can thus play a critical role in the 
success of healthcare systems due to their particular 
nature [43]. Therefore, SOA and web services offer a 
great potential to overcome interoperability 
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challenges. Using a translation layer to assign a coded 
phenotype category and to generate some valuable 
text strings to genetic test results also represented 
another solution proposed in predict [41]. At a higher 
level, knowledge sharing requires appropriate 
standards for interoperable data representations. 
Messaging frameworks adapted with HIT 
terminologies are also a critical task. Unfortunately, 
traditional terminologies do not support genetic 
diseases as expected. For example, a mapping 
between SNOMED CT and OMIM terminologies 
remains as a semantic gap [19]. These standards 
enable information in each of the separated systems 
to be related to each other and also generate new 
knowledge [44]. In 2017, Kuehn [45] argued that 
putting a whole genome in EHRs was not effectively 
operational. He also adopted a standard language for 
genomic information that had been developed on 
FHIR. HL7 FHIR standard was released to achieve 
healthcare system interoperability. FHIR was then 
developed based on HL7 v2 and v3.  As a resource-
oriented standard; patients, devices, and documents 
can be defined in the present model as resources. 
Simplicity has been also embedded into the core of 
FHIR. Therefore, it has attracted a lot of attention 
from health informatics communities [46]. Moreover, 
HL7 is an SOA compliant standard designed based on 
XML [47]. So, considering the development and 
advancement of SOA as well as increased popularity 
and application of FHIR, it seems that there are clear 
horizons for full interoperability of EHR and genetics 
data. It is worth noting that maintaining privacy and 
confidentiality in the interoperable genomics-
integrated EHR is an essential work task [22].  

Finally; big data computation, discussed in this 
review, were considered as the last non-functional 
requirement. Thus, EHRs need to simply achieve big 
data along with their generation. Although non-
operational data do not require to be immediately 
available to practitioners, they must be stored for 
future data mining, knowledge discovery, and 
visualization [40, 48]. Big data have been posed by 
large genomic variations and clinical phenotypes in 
the pharmacogenomics scope. These data aggregated 
from multiple data sources after integration into a 
data warehouse using interoperability standards. 
Genomics research and innovation network (GRIN) 
have also been formed to create a broad database of 
annotated genomics and clinical data. The network 
adds transcriptome, proteome, and metabolome and 
intends to connect EHR and other systems. By the 
advancement of graphics processing units and deep 
neural networks, it is possible to mine a huge volume 
of big data in a shorter time. Also, cloud computing 
has made data manipulation easier. To handle the big 
data efficiently, Apache Spark and Hadoop have been 
introduced. These potential tools have led to some 
projects like the national institutes of health (NIH) 
genomics [49-51]. The results of all requirements in 

this regard are summarized in the way that genomics 
big data computation is the intersection point of 
other mentioned requirements to achieve an applied 
and appropriate integration. The ethical, legal, and 
security requirements had been also discussed by 
Hazin et al. in a detailed study [22]; therefore, they 
were not examined in this study. 

DISCUSSION  

In countries without a national EHR infrastructure, 
handling and combining data across multiple EHRs, 
information systems, genomics databases, and larger 
population studies are challenging. These data 
sources complement patient basic information. 
Likewise, some other type of data from informal 
sources such as patient groups in social networks, can 
play a positive role in genomic medicine [25]. Clinical 
and genomics data warehouses also aggregate data 
and facilitate retrospective analysis, data mining, 
knowledge discovery, and visualization. 
Standardized terminologies and comprehensive 
controlled vocabularies similarly play the main role 
in integrating heterogeneous data in a single clinical 
data warehouse. To reduce unavailable or 
incomputable health and genomics data within this 
hybrid data warehouse, data manipulation methods 
and technologies such as NLP and structured query 
language (SQL) are needed [52, 53]. In this respect, 
Angulo et al. described a lightweight message-
oriented data integration engine that allowed 
concurrent connection to clinical information from 
various heterogeneous data sources. They applied 
XML-based technologies to generate messages and 
templates. The platform was an operational model 
which could be also used in genomics information 
systems [55]. Therefore, a data warehouse was 
proposed in the present study to handle multiple data 
sources for knowledge discovery and visualization 
based on findings and recommendations by Angulo et 
al. [54]. 

CONCLUSION  

EHRs demonstrate potentials to enable 
pharmacogenomics and PM. The main challenges in 
this way include semantic and technical themes. To 
develop clinical DSSs and to extract modern 
knowledge from genomics data, a standardized 
format and machine-readable format was required. 
To integrate genotype-phenotype of a patient as well 
as the nature of multiple data sources in genomics, 
interoperability of related resources has been thus 
emphasized. To distribute extracted and visualized 
knowledge, online portals can facilitate the sharing 
process. As a whole puzzle, each requirement is 
dependent on others. Future studies can be directed 
towards introduced tools, methods, algorithms, as 
well as hardware and software in each requirement. 
A software methodology was also proposed to 
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develop various solutions and scenarios about the 
topics. This methodology was suggested as scientific 
and evidence-based requirement engineering by 
focusing on articles rather than people. Combination 
of current artifacts with other methods such as 
interviews can also lead to more accurate results. 
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