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Introduction: According to global statistics, stroke is known as the main 
health problem in the world. Many clinical and molecular research, which 
are stored in the different repository with the various format have been 
conducted in the area of stroke domain. The heterogeneity of these research 
data does not make a comprehensive view of the disease. Recently, 
translational research has been developed to fill the gap between these 
studies. In this study, we used the integrative disease modeling method to 
model the underlying mechanism of stroke risk factors. 

Material and Methods: This study was conducted in three steps: data 
gathering, model construction, and mechanism discovery. First, using 
semantic and information retrieval tools, we extracted the cause and effect 
statement from the literature to create the mechanistic model, and the 
validated molecular data to evaluate the constructed model. Then, the 
integrative model was created and evaluated. Finally, we used Gene Set 
Enrichment Analysis to identify the main biological process and signaling 
pathways in the mechanism of the disease. 

Results: In the evidence-based information retrieval from the literature, 
1837 causal statement was extracted. The initial network was created with 
648 nodes (molecular, clinical, and environmental factors) and 1837 edges 
(interactions). Also, 51 genes/proteins and nine single nucleotide 
polymorphisms were matched with data in the model. The inflammatory 
response, response to lipid, regulation of body fluid levels, and regulation of 
response to stress, complement and coagulation cascades, and PPAR 
signaling pathway were the main biological processes and signaling 
pathways enriched in GSEA analysis. 

Conclusion: This study showed that we can identify the underlying 
mechanism of stroke risk factors and use a proper strategy to prevent it, 
using Integrative Disease Modeling. 
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INTRODUCTION 

Stroke is the second cause of death worldwide [1] has 
more than 150 known causes and about 25%-30% of 
stroke cases are classified as heterogeneous [2]. 
Genetic factors, also are involved in both strokes with 
known and heterogeneous causes [3]. Therefore, a 
variety of environmental and genetic factors are 
involved in brain stroke.  

The complexity of stroke is not just about the gene-
environment interaction. The lack of access to brain 
tissue in live patients, the complexity of the 
anatomical structure of the brain, and the lack of 
biomarkers to predict stroke, all contribute to the 
complexity of the disease. In recent years, the macro 
pharmaceutical industry has invested more than $ 1 
billion in discovering and producing new drugs for 
stroke, but they have not yet marketed a drug other 
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than tissue plasminogen activator (TPA), and most of 
these investments have failed [4, 5]. TPA has a 
specific list of indications and contraindication. The 
efficacy of this drug depends on the time consumed. 
Therefore, strategies based on primary or secondary 
prevention are prioritized [6]. These failures have led 
the pharmaceutical industries to reduce their 
activities in the production of neuroprotective drugs 
[3]. Neuroprotective drugs are drugs that prevent or 
reduce the progress of the disease. Interestingly, 
neuroprotective drugs in pre-clinical and in-vitro 
investigations have a very good and repeatable 
therapeutic effect but do not show a satisfactory 
performance when tested in humans. Therefore, the 
transfer of the therapeutic effects of new drugs from 
model animals to the human body requires a deep 
understanding of the molecular mechanisms 
involved in the stroke in the human brain. With deep 
knowledge and insight from the interaction of 
molecular and environmental factors, it is possible to 
identify the biological pathways that lead to stroke 
and target new drugs or preventive strategies. 

Since stroke is a complex disease of the nervous 
system, identifying the causes of its occurrence, 
treatment, and prevention requires a comprehensive 
investigation of scientific findings at the pre-clinical, 
clinical, and post-clinical level. This disease not only 
has different phenotypes but also has very complex 
causative mechanisms and various risk factors [3]. 
One of the modern and expanding strategies, which 
recently proposed to overcome the complexity of the 
disease mechanism is translational research, which is 
done by integrating various data and modeling the 
mechanism of disease at all physio-pathological 
levels [7]. Various research groups and researchers 
have conducted different studies on the area of stroke 
domain. Each study is published and stored in 
different databases, with different and often 
heterogeneous formats. This heterogeneity does not 
result in a comprehensive view of the mechanism of 
the disease. In this study, we pointed out that the 
utilization of translational research techniques 
explains the underlying mechanism of stroke risk 
factors at the molecular level and translates into 
clinical practice. 

MATERIAL AND METHODS 

This study was done in three steps, including data 
gathering, model construction, and mechanism 
discovery. 

Step 1: Data gathering 

Selection of the main stroke risk factors 

In this study, we used the integrative modeling of risk 
factors mechanism underlying stroke. Since, stroke 
has many risk factors, to avoid the complexity of the 
model, we have to select one or two main risk factors. 

To do this, we conducted a hospital-based study. In 
the study population, hypertension, dyslipidemia, 
and diabetes significantly increased the risk of stroke. 
For model construction, we selected dyslipidemia 
and diabetes. The result of this study was published 
in [8] and [9].  

Information retrieval from biomedical literature 

Since the mechanism of the disease is usually a cause-
and-effect relationship, it was necessary to access 
this information to model the mechanisms of stroke. 
We used text mining and semantic tools to retrieve 
information and extract knowledge from the 
literature. First, we integrated Stroke Ontology (STO) 
(https://bioportal.bioontology.org/ontologies/STO-
DRAFT) with KNIME, a text-mining tool [10]. Then 
using STO root class terms and based on two main 
stroke risk factors (dyslipidemia and diabetes) we 
conducted a search strategy on PubMed abstract; 
accessed 25.02.2017. We manually filtered 545 
retrieved abstracts based on the relevancy of their 
content, of which 157 abstracts were selected. We 
extract the casual statement underlying stroke from 
the full text of these selected papers. The process of 
information retrieval and knowledge extraction 
illustrated in Fig 1.  

Molecular data gathering for model evaluation 

Furthermore, we need experimental omics data 
(gene and protein expression and Single Nucleotide 
Polymorphisms (SNPs) data) to biologically evaluate 
the constructed model. Gene expression data 
gathered from the Gene Expression Omnibus (GEO) 
database. The GEO database accession number was 
GSE43618 (PMID: 23559260), GDS4521 (PMID: 
22453632), GSE55937 (PMID: 24911610), and 
GSE37587 (PMID: 25124890). Also, we found some 
experimental data from (PMID: 15630028), (PMID: 
16395289), (PMID: 17997827), and (PMID: 
27407070). The human protein atlas was used to 
gather protein expression data. We used the GWAS 
catalog and Array Express database to gather SNPs 
related to stroke. The full list of gene expression, 
protein expression, and SNPs data could be found in 
supplementary file 1, 2, and 3, respectively.   

Step 2: Model construction and validation 

In this study, we create a computational cause and 
effect network of all molecular and non-molecular 
data of stroke pathophysiology using the Cytoscape 
tool [11]. This model illustrated the interaction 
between various factors extracted from the 
literature. This network contains nodes (clinical, 
molecular, and environmental data) and relations 
between them which shows causal relations of 
various factors. 

The created model was based on published literature, 
which may be shown in the elusive biological process. 
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To realize the constructed model, we evaluated the 
model using curated molecular data (explained in 
Step 1). Using the Cytoscape tool, we matched our 
model with these data. 

 

Fig 1: The process of extraction of the cause and effect 
statements from the literature, using ontology and data 

mining tools. As the process showed, we firstly integrated 
the stroke ontology (STO) with KNIME. After that, using the 

PubMed query, we retrieved evidence related to 
dyslipidemia and diabetes in stroke. we manually select 

related evidence. Finally, we extract a casual statement for 
model creation.  

 

Step 3: mechanism discovery 

In this step, we used Gene Set Enrichment Analysis 
(GSEA) to identify the main signaling pathway and 
biological process. For enrichment analysis, we used 
Gene Ontology (GO) biological process gene set and 
Kyoto Encyclopedia for Gene and Genome (KEGG) 
gene set from the Molecular Signature Database 
(MSigDB).  After adjustment enriched processes and 
signaling pathways with our constructed model, the 
underlying mechanism of dyslipidemia and diabetes 
in stroke patients was explained.  

RESULTS 

Knowledge extraction 

About 1837 statement filtered after STO-supported 
manually retrieval of a casual statement from the 
literature. Of each statement, we extract the cause, 
effect, and their relation to save in a separate file for 
using in the next step. 

Model construction and validation 

The initial network of different factors underlying 
stroke comprises 648 nodes (molecular, clinical, and 
environmental factors) and 1837 edge (interactions). 
Using this casual model, we aimed to identify the 
underlying mechanism which increases the risk of 
stroke. Fig 2 illustrates the causal model of selected 
risk factors of stroke.  

 

 

Fig 2: Cause and effect model of stroke risk factors. The initial model of stroke underlying mechanism consists of causal factors 
(nodes) and the relation (edges) between them.  

Stroke Ontology (STO) PubMed Query 

Text Mining Tool 

PubMed Article 

Selection 

Knowledge Extraction 
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To evaluate the constructed model, curated 
molecular data (see Method) were matched with the 
model. As shown in Table 1, 51 expressed Gene and 
Protein were matched within the model.  

Table 1: The count and name of the expressed gene and 
protein were matched within the model. 

Expression 
data 

Count Description 

Gene 21 

TFPI; F3; LCN2; TBXA2R; 
ITGA2B; MIR223; CXCL8; 
MIR15A; MIR21; SELP; MIR126; 
MMP9; MIR20B; MAPK1; APOE; 
CD36; TNF; FABP4; IL10; 
PDGFA; VEGFA 

Protein 36 

APOB; ADIPOQ; VCAM1; PON1; 
APOA1; ICAM1; APOC3; FGA; 
MMP8; LCN2; SAA1; SERPINA3; 
TGFB1; LPA; CCL2; CRP; CDC42; 
FABP4; F13B; MPO; PROC; F2; 
AGT; CD36; SERPINC1; VWF; F7; 
F12; AOC3; ITGA2B; APOA2; 
PLTP; CHIT1; PLA2G7; MMP9; 
APOE 

Also, nine SNPs were found within the model. Table 2 
shows the list of SNPs with their related gene/protein 
name. 

The main model of stroke was filtered by these 
genes/proteins and their first neighbors. The new 

network contains validated multiple causal factors 
which have 209 nodes and 819 edges.  

Table 2: The Single nucleotide polymorphisms(SNPs) and 
related gene/protein were matched within the model. 

SNP ID Gene/Protein 
Gene/Protein 
Description 

rs2592902 CRP C-reactive protein 
rs2048327 
rs10455872 

LPA Lipoprotein(a) 

rs1799963 
F2 

Coagulation factor II, 
thrombin 

rs2022309 
F3 

Coagulation factor III, 
tissue factor 

rs9326246 APOA1 Apolipoprotein A1 
rs6041 
rs555212 

F7 Coagulation factor VII 

rs562338 APOB Apolipoprotein B 

Gene Set Enrichment Analysis 

Using GSEA analysis of GO (biological process) on our 
gene/protein list (retrieved from the literature), we 
identify a list of the enriched biological process 
involved in the mechanism of dyslipidemia and 
diabetes in stroke (Table 3). In accordance with the 
stroke model, biological process of the inflammatory 
response, response to lipid, regulation of body fluid 
level, and regulation of stress response enriched.

 

Table 3: The top biological process from Gene Set Enrichment Analysis (GSEA) of Gene Ontology (GO): biological process data set 

Gene Set Name 
# Genes in Gene 

Set (K) 
# Genes in 
Overlap (k) 

k/K p-value 
FDR q-
value 

REGULATION_OF_RESPONSE_TO_WOUN
DING 

413 20 0.0484 4.47E-28 1.98E-24 

RESPONSE_TO_EXTERNAL_STIMULUS 1821 29 0.0159 1.18E-27 2.63E-24 

REGULATION_OF_RESPONSE_TO_EXTER
NAL_STIMULUS 

926 23 0.0248 8.78E-26 1.3E-22 

INFLAMMATORY_RESPONSE 454 19 0.0419 1.97E-25 2.19E-22 

RESPONSE_TO_LIPID 888 22 0.0248 1.4E-24 1.15E-21 

REGULATION_OF_BODY_FLUID_LEVELS 506 19 0.0375 1.56E-24 1.15E-21 

REGULATION_OF_PLASMA_LIPOPROTEI
N_PARTICLE_LEVELS 

45 11 0.2444 9.74E-24 6.17E-21 

RESPONSE_TO_WOUNDING 563 19 0.0337 1.18E-23 6.54E-21 

REGULATION_OF_RESPONSE_TO_STRESS 1468 24 0.0163 1.07E-22 5.25E-20 

RESPONSE_TO_OXYGEN_CONTAINING_C
OMPOUND 

1381 23 0.0167 7.2E-22 3.2E-19 

GSEA pathway analysis resulted in a list of the 
enriched significant pathway (Table 4). Complement 
and coagulation cascades and PPAR signaling 
pathway corresponded with the stroke model.  

Fig 3 illustrates the mechanisms by which oxidative 
stress led to inflammatory responses and increases 
the risk of stroke. 
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Table 4: The top pathway from Gene Set Enrichment Analysis (GSEA) of KEGG data set 

Gene Set Name 
# Genes in Gene 

Set (K) 
# Genes in 
Overlap (k) 

k/K p-value 
FDR q-
value 

COMPLEMENT_AND_COAGULATION_CAS
CADES 

69 10 0.1449 3.58E-19 6.66E-17 

PPAR_SIGNALING_PATHWAY 69 7 0.1014 1.38E-12 1.28E-10 

PATHWAYS_IN_CANCER 328 8 0.0244 3.02E-9 1.87E-7 

CYTOKINE_CYTOKINE_RECEPTOR_INTER
ACTION 

267 7 0.0262 1.92E-8 8.94E-7 

FOCAL_ADHESION 201 6 0.0299 9.93E-8 3.69E-6 

BLADDER_CANCER 42 4 0.0952 1.46E-7 4.52E-6 

NOD_LIKE_RECEPTOR_SIGNALING_PATH
WAY 

62 4 0.0645 7.15E-7 1.9E-5 

PANCREATIC_CANCER 70 4 0.0571 1.17E-6 2.41E-5 

RENAL_CELL_CARCINOMA 70 4 0.0571 1.17E-6 2.41E-5 

LEISHMANIA_INFECTION 72 4 0.0556 1.31E-6 2.43E-5 

 

 

Fig 3: Mechanism of oxidative stress in stroke. This mechanism filtered from the constructed model. 

DISCUSSION  

In this study, employing integrative disease modeling 
methods, two common important risk factors for 
stroke (dyslipidemia and diabetes) were 
mechanistically modeled. GSEA showed that the 
biological process and pathway of the inflammatory 
response, response to lipid, regulation of body fluid 
levels, regulation of response to stress, complement, 
and coagulation cascades, and PPAR signaling 
pathway are involved in the stroke mechanism. In 
each of these biological pathways, there are several 
factors involved in which inhibition or stimulation 

can affect these pathways. Modeling has shown that 
various factors such as Insulin, ADIPOQ, PPARG, 
NOS3, and HDL-C have an effect on these pathways 
and in many threatening processes such as lipid 
oxidation and ROS biosynthesis process. 

Inflammation is common in cardiovascular diseases 
(CVD) and increases the risk of CVD and diabetes 
[12]. The presence of inflammation, which somehow 
indicates the stimulation of the immune system, is 
followed by damage to the nerve cells and the impact 
of various risk factors, such as diabetes and obesity 
[13, 14]. Also, some markers, such as CRP, TNFA, and 
IL6, are present in the mechanism of inflammation 
that increases in an ischemic obstruction [15]. 
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Dyslipidemia may also be involved in stroke. For 
example, reducing High-Density Lipoprotein (HDL) 
cholesterol leads to an increase in inflammation, 
which increases the risk of CVD and ischemic stroke 
[16], especially in diabetic patients [17]. As our model 
shows, Reactive Oxygen Species (ROS) play an 
important role in the production of CRP through 
NfKB activation [18], nitric oxide reduction [19], and 
increased oxidative stress [20], and TNF [21]. The 
model also showed that some cytokines, such as 
ICAM1 and VCAM1 [22], also contribute to 
inflammatory responses. According to model 
findings, factors such as PPARG and ADIPOQ inhibit 
the underlying factors of inflammation. For example, 
PPARG reduces CRP production and thereby 
inflammation by restricting cytokines or inhibiting 
TNF [22]. 

The analysis of cause and effect mechanisms involved 
in increasing the risk of stroke showed that oxidative 
stress plays an important role in various mechanisms 
of stroke, including endothelial dysfunction and lipid 
oxidation. As the model showed, among free radical 
producing factors, VEGFA increases the production of 
ROS by activating NADPH oxidase and obesity due to 
the high amount of Leptin (LEP) in obese people. On 
the other hand, hyperglycemia also increases the 
amount of superoxide (O2-) and AGE production. 
AGEs are products that inhibit NOS3 enzymes. 
According to our findings, NOS3 inhibition inhibits 
the production of nitric oxide, resulting in increased 
oxidative stress. Oxidative stress causes LDL 
oxidation, which itself activates inflammatory cells 
and increases factors such as NfKB [18]. Following 
this, the increase in some inflammatory markers, 
such as IL6, CRP, and TNFA, and some adhesion 
molecules [23], provides the basis for inflammatory 
response. The role of some factors in increasing the 
biosynthesis of nitric oxide in the model is well 
demonstrated. ADIPOQ plays an important role in 
this process in two ways.  First, stimulating the 

metabolic process of insulin, increases the 
biosynthesis of nitric oxide. Also, through the second 
way, increasing the expression of AMPK, and 
subsequently increasing the NOS3, facilitates the 
production of nitric oxide. 

CONCLUSION  

Integrative Modeling showed that using a variety of 
molecular and clinical data which are stored in 
different databases, can increase our understanding 
of disease mechanisms. Forasmuch as this method is 
based on evidence, so using this method provides a 
better understanding of the disease mechanism. 
Since the proper understanding of the role of the 
various factors in the mechanism of diseases is 
contributing to the development and proposal of new 
therapies, we must look for solutions to interfere 
with these biological pathways. 

In this study, only the risk factors of dyslipidemia and 
diabetes were examined mechanistically, while other 
factors such as hypertension were not studied. 
Therefore, the proposed model was only for two 
mentioned risk factors without considering other 
factors. 
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